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Abstract

An analytical approach to heat transfer, for crystal growth

in a Bridgman-Stockbarger configuration has been developed. All

first order effects on the axial temperature distribution in a

solidifying charge are analyzed on the basis of a one-dimensional

model whose validity could be verified through comparison with

published finite difference analyses of two-dimensional models.

The present model includes an insulated region between axially

aligned heat pipes and consider; the effects of charge diameter,

charge motion, thickness and thermal conductivity of a confining

crumble, thermal conductivity change at the crystal-melt inter-

face., generation of latent heat at the interface and non-infinite

charge length. Results are primarily ,given in analytical.form and

can be used without recourse to computer work for both improved

furnace design and optimization of growth conditions in a given

thermal configuration.
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1. INTRODUCTION

Conventional techniques for crystal growth from the melt

prove increasingly inadequate in meeting property requ irements

for electronic materials as dictated by advanced device technology.

in this context it is of interest that renewed attention is

recently being paid to seeded vertical Bridgman growth *here the

driving force for interfering free melt convection is reduced

and the critical axial and radial, thermal gradients are at least

in principle readily controllable. Motivation for a

thorough re-examination of this crystal growth technique is

provided by ample evidence in the open literature that basic heat

transfer considerations have been largely ignored in its applica-

,tion. These considerations are now recognized to strongly affect

both crystalline and chemical perfection of the resulting solid.

in recent years several thermal analyses of Bridgman-type

crystal growth systems have been reported in the literature.

Noteworthy among these is a series of outstanding publications by

Wilcox et al. (1 ' 2 ' 3) in which the effects of several dimensionless

parameters on both axial and radial temperature distribution were

analyzed and significant ^^onclusions were drawn. The modeled

systems, however, were simplified in several respects and the two-

dimensional formulation (except for part of Chang and Wilcox(l))

precluded simple analytical results. Of interest is also the work

of Davis (4) and Clyne (5,6) which demonstrates that one-dimensional

models can accurately predict experimental axial temperature vari-

ations. Their models were not nondimensional and, consequently,

significant thermal and geometric parameters which control the

i
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system behavior were not identified, and their conclusions cannot

readily be extended to systems of different parometer values.

The present work is part 
of 

a comprehensive integrated theo-

retical and experimental approach to vertical Bridgman growth in

which one- and two-dimensional heat transfer models arc used as a

basis for optimized system design. The system -(presently in con-

struction) makes use of high temperature heat pipes which provide

for axial and ax.-symmetric temperature uniformity and thus for

thermal boundary conditions which permit a meaningful theoretical

analysis. The configuration (Fig. 1) includes, between aligned

heat pipes, a gradient control region in which the crystal-melt

interface is to be located. The purpose of this region, first

suggested by Chang and Wilcox, (l) is to provide control of heat

Mow near the interface, required for the establishment of desired

radial thermal gradients. The design and operation parameters are

expected to provide for the system under construction a wide range

of critical axial gradients and radial gradients leading to growth

interface morphologies ranging from convex to concave. Primary

attention is focused, however, on the establishment of growth

conditions which preclude nucleation at the confining boundary

with the simultaneous minimization of radial segregation effects.

The use of a magnetic field for the reduction of free melt convec-

tion is provided for.

This study analyzes the effects of both system and operation

parameters on the axial temperature distribution in the charge on

the basis of a one-dimensional model. * This particular approach

R

*Radial tempe.i•,-ature variations in the charge are the subject of a
publication (Part 11) presently in preparation.
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was selected since ovexsimplA i.ed models are not required in order

to provide useful and easily applied analytical results. The heat

transfer analysis focuses on the following effects; geometry and

material of the charge-confining crucible, diameter effect of the

charge, length of the gradient control region, charge motion,

thermal coupling to the furnace, charge length, generation of

latent heat at the crystal.-melt interface, and thermal conductivity

change at the interface. special attention is given to the axial

temperature gradient at the interface and the axial position of the

interface within the gradient control region.

The purpose of this analysis, which considers all first order

effects on axial thermal gradients, is

design of Bridgman-type growth systems

optimized axial gradient control durin,

experiments. Its primary asset is the

meaningful information can be obtained

without resort to computer work.

to provide a basis for the

and to give guidelines for

j the execution of growth

timesaving element, since

from the analytical results

2. DEVELOPMENT OF HEAT TRANSFER MODEL

The factors of concern for the development of a one-dimensional

heat transfer model, of the Bridgman growth system depicted in

Fig. 1 are shown in Fig. 2. Hot and cold heat pipes comprise the

hot and cold zones; the region between them is called the gradient

zone. The length of -the charge is broken down into L H , L., and LO

within the hot, gradient and cold zones respectively. The charge

is lowered through the furnace with a velocity V, has Liquid and

solid portions with different thermal conductivity, and has a



crystal-malt interface which generates latent heat. A crucible

provides containment for the charge.

The model makes the following assumptions:

1. Hot and cold zone furnace temperatures are

uniform, reflecting the heat pipe action,

and extend to infinity in either direction.

2. The system is at all times i"n a quasi-steady

state; i.e. transients are neqlected.

3. No heat transfer by convection in the malt.

4. Heat exchange between the furnace and the charge

is described by a heat transfer coefficient, h,

that is constant within each zone; for simpli-

fied models in which the crucible is not taken

into consideration, h is calculated between the

furnace and the surface of the charge; when a

cruciblo is included in the modeling, h is calcu-

lated between the furnace and the out-6r crucible

surface. The gradient zone is assumed adiabatic,

i.e. hG

5. The one-dimensional model considers only axial

heat transfer within the charge; i.c. the temper-

ature in the charge is not a function 
of 

radius.

With these assumptions, -the charge is analagous to the moving

thin rod treated by Carslow and Jacger (7) and the equation, in non-

dimensional form, describing the axial temperature distribution is:

2

d -0-	 Pe	 4BiO	 -4Bie
 dt,	 fd4

where:

z/D (non-dimensional axial coordinate measured

from the center of the gradient zone)
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e =	 ref (non-dimensional temperature)AT ref

8 f = non-dimensional furnace temperature

Pe = Peclet number = VD/a

Bi = Biot number = hD/k

a = thermal diffusivity

h = heat transfer coefficient

k = thermal conductivity

V = charge displacement rate (lowering rate)

D = charge diameter

Equation (11 is applied to each region of uniform properties and

Bi. In the present model there are four such regions when placing

the growth interface in the gradient zone: the hot and cold zones

and the liquid and solid parts of the gradient zone. Boundary con-

ditions are equality of temperature and continuity of flux between

adjacent regions. At the crystal--melt interface, the flux condition

gives:

RK (de )	 = Pe
solid ki + ( d O )	 [21

liquid	 ^ solid

where

RK kliquid^ksolid
{
t

t RH = AHSL/Cp,solidQTref

AHSL = latent heat of solidification

Cp,solid r specific heat of the solid

(The Peclet number in eq. (2] is correctly based on the actual
'	 1

F
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growth rate and it is assumed here that the growth rate is equal to

the lowering rate V.)

For each region, eq. (1) yields two exponential terms for the

homogeneous solution and a particular solution that depends on Ofo

The constants of integration on the exponential terms are found

using the boundary conditions. This has been done analytically

for systems of infinite charge longth; expressions for the axial

gradient in the liquid and for the temperature at the crystal-melt

interface are given in the Appendix. (If the complete axial tamper-_
ature distribution is required, it is more convenient to determine,

the constants of integration by computer.)

in consideration of the complex nature of the thermal modol,

a system with idealized narameter values, presently called a

"symmetric" system, is used as a reference against which the effects

of individual parameters will be assessed. A symmetric system is

defined to have the following parameter values:

1. Equal Riot number in hot and cold zone; i.e.,

BiH = Bic =. Bi.

2. Pe = 0.

3. Equal solid and liquid thermal conductivities

(Rj

4. No generation of latent heat (RBI = 0).

5. Equal charge lengths in the hot and cold zones,

(L11 = T'jc) .

Under such conditions, a symmetric system will have the

axial temperaLure distribution,

0 (-O + 0 (0 =- 1	 (31
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3. ANALYSIS

3.1 Crucible Effect

in Bridgman growth, all charges are confined in a crucible

which, depending on conditions, varies in dimension and composition.

Containment of the charge tends to decrease axial gradients (Sen

and Wilcox (2) )	 A crucible of low thermal, conductivity Lowers the

gradient by adding thermal resistance between the charge and fur-

pace, effectively decreasing Bi; one of high thermal conductivity

lowers the gradient by "short-circuiting" heat flow within the

crucible itself.

The domain of eq. [l] is here considered to be the charge only

and the crucible is not explicitly included: However; a simple

model of the heat transfer within the crucible allows for its

consideration In eq. [1] through modified Biot and Pedldt numbers.

The temperature distribution in the crucible obeys the heat

conduction equation in cylindrical coordinates. Neglecting Pe

effects, we obtain:

2
]. a	 Doer	 a ®cr

a

where:

e cr = non-dimensional crucible temperature

P non-dimensional radial coordinate, r/D

r radial. coordinate

The first term of eq. [4] accounts for , the radial thermal resis-

tance of the crucible, while the second accounts for the "short-

[9]
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circuit". if, at each axial location of the crucible, D20 cr /04 2

is considered to be independent of p and equal to d 20/dr2 of the
charge, eq. [4) can be integrated to yield a radial distribution
of 0 cr, The boundary conditions are:

h DO	 0 ) = k 0 
docr

cr , f	 cr	 cr —j—P

Ocr = e (charge)

	

*(at the outer cru-	 [5a]cible surface)

	

(at the inner cru-	 [5b]
cible surface

where:

her = heat transfer coefficient between furnace and
outer curcible surface

k cr = thermal conductivity of the crucible,

(Equation (5b) assumes that the crucible and charge are in intimate

contact.) The heat flow from the crucible to the charge can thus

be obtained in terms of dO 2 /d ^2 and used to reformulate eq. [1]

through "effective" Biot and Peclet numbers:

Bi ef f  	 [;L(62_1)	

Bi cr 	
2_1) 1 X__ 	

[6a]
I +Bi	 - l kn6l + K (6	 i kn 6

	

cr 4	 2	 2RB cr

P(--[l+ i —.IK Bi crkn6]
2 Pe	 -	 I	 [6b]eff 

1 +Bi	 k Q -J-) - Ln n6] +K(S'-I) + LL Bi kn6

	

cr 4	 T	 2 K cr

where:

Bi eff "' Biot to be used in eq. [1]

Peeff =* Peclet to be used in eq. [1]

D cr = outside diameter of the crucible
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Bicr w hcrDcr/'k

k conductivity of the charge (either solid
or liquid)

6 Dcr/D

K kcr/k

The relationship between the effective Biot number and the

conductivity ratio K is shown in Fig, 3 for 6 w 1.25 and various

Bicr* It can be seen that Bi eff is significantly reduced by both

low and high values for K. (The relationship between Bi and axial•

gradients will be established in Section 3.3; it shows that the

present findings are in basic agreement with those of Sen and

tl?i lcox. (2) 1 The conductivity ratio K which maximizes Bi 	 can be

obtained from eq (6]:

B''cr n
K (max Bi) ^ 2(a ^^

Taking typical values of Bi cr and 6, the conductivity ratio pro-

viding for maximum axial gradients is ;found to lie between 0.1 and

1.0. (Since all charges require confinement, the Biot and Feclet

numbers used in subsequent sections are to be considered as Bieff

and Peeff unless otherwise stated.)

3.2 Peclet Number Effect

Pe is the ratio of axial heat transfer in the charge due to

[7]

motion and diie to conduction. The effect of Fe on the axial temper-

ature distribution in an otherwise symmetric system, obtained
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through eq. [l]r is shown in Fig. 4. large V (e.g. high lowering

rate or low thermal conductivity of the char o) Increasos the tem-

perature of the charge everywhere. As a consequence, in systems

with constant malting point temperature, the crystal-melt inter-

face will move toward the cold zone; alternatively, the furnace

tembrutures Must be lowerea if the Interface position is to

remain fixed.

In conventional growth experiments, the PC effect is small

since the lowering rates are small (e.g. 0.1-10 Vm/sec). A test

criterion for its relative magnitude is provided through the

characteristic roots of eq. [1] ;

zj1/2
M	 [l :t (l +is B14 ) 	 1	 [8]

Pe

It can be seen that PC disappears from eq. [83 when

01 1/2

Equation [9] agrees with Chang and Wilcox (l) who reported that the

PC effect was stronger for smaller Di. If the inequality in eq.

[9) holds, the PC effect is small enough to satisfy the Peclet

number cirterion for symmetric systems (i.e. PC a 0). it should

be noted (eq. [21) that the generation of latent heat at the growth

interface is also dependent on Pe. Thus, Pe has a small effect on

the axial temperature distribution only if eq. [9] holds and the

latent heat effect is small (see Section 3,6).
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3.3 Biot Number Effect

The Biot number:, through the heat transfer coefficient h, is

a direct measure of the thermal coupling between the charge and

the furnace. Typical values for the effective Biot number (i.e.

after accounting for the crucible) vary from 0.05 for high conduc-
r

`	 ti.vi.ty materials such as Ge to 5.0 for low conducti.vi.ty materials

such as CdTe. Axial temperature orofYiles :for several Bi, calcu-

lated from eq. Ell for symmetric systems, are shown in Fig. 5. in

agreement with Chan g and Wilcox, (1) it is found that the charge

temperature follows rare closely the furnace temperature and, as

a result, the axial temperature gradient in the gradient zone

increases as Bi increases.

The axial gradient behavior at the crystal--melt Mterf:ace

presen ed in the Appendix can be simplified for symmetric

systems:

do =	 -1
U 1G + Bi`

where:

X = non--dimensional zone length, L/D

Bi, a BiH r B
iC for symmetric systems

^H r 1
C infinity

The dependence of the gradient (d0/d^) on Bi, according to eel. [10],

is plotted in Fig. 6 for various gradient zone lengths (JA G). The

graphs show that the dependence of the axial gradient'on the gradi-

ent zone length becomes stronger with increasing Bi. It can also

[lo]
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be soon (curve X. w 0) that there exists a minimum Bi for any

desired ►ion-dimansional axial gradient. An obvious alternative

to incronsing"Bi for achieving larger axial gradients is to in-

crease the temperature difference between the hot and cold zones

since:
a

dT 
W 

AT	 dO3 Z	 ref 3—;

This approach, however, is contingent on the absence of adverse

side effects such as the development of excessive vapor pressures

associated with increases of the hot zone temperature; it is also

no viable alternative if, as a consequence of furnace temperature

changes, the non-dimensional interface temperature is altered and

rosin to in the interface boing shifted into an undesirable region

w'Lthin the gradient zone,

The Blot numbers of the hot and cold zones are generally not

equal due, for example, to the temperature dependence of radiative

hept transfer. For such conditions the zone with the larger Bi

will more strongly influence the overall temperature level (Fig.

7). Compared to the symmetric case (Bi if = 131, C ), the temperature

increases everywhere within the charge when Bi Ii > Bi 
C and

decreases everywhere within the charge when Bi
C > Bi11, 

in Fig. 71

the crystal-melt interface location for each curve is placed in

[ill

the center of the gradient zone and the

as a change in nondimensional interface

the interface in this location during a

tates a lowering of the hot and/or cold

decreases.

unequal Bi effect appears

temperature. To retain

growth experiment necessi-

zone temperature as Bi C
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The expression for the axial temperature gradient in the gra-

dient zone (analagous to eq. [10) for Bi ,C 9 BiH) is

d® -	 -1
a-
4 - X  + 2 

(Bid	 + Bi-	 )
[12)

where:

X 	
X  = infinity

System is symmetric except Bi C ^ BiH

Interface is at the center of ',:he gradient zone.

Equation ( 12] indicates that if one of the Biot numbers is much

smaller than the other, it will control the axial gradient. Efforts

to increase axial gradients by adjusting Bi should therefore first

be directed at the zone with the Lower Bi.

3.4 Charge Diameter Effect

The effect of the charge diameter D on the axial temperature

gradient is assessed on the basis of eq. [10]. In practice, chang-

ing D will affect other parameters as well; a corresponding change

in the geometry of the furnace cavity, for example, will modify

both conduction and radiation heat transfer coefficients; changes

in Dcr and 6 will also alter the effective Biot number. In order

to permit isolation of the diameter effect, all other parameters

are assumed fixed in the present analysis.

Since the axial coordinate in eq. (10), ^, is non-dimensionalized

with respect to D, it is considered more informative to compare

axial gradients based on the dimensional axial coordinate z. If



Lim -(do/dz)
Bi	 00 

07a) 
2

X G	 0	 0 z-	 1-
(13a)
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the gradient zone length, L GI remains unchanged (i.e., XG varies

as D-l ), the limiting cases for largo and small Bi are given by:

I
lim	 (do/dz) 2	 DBi °}0	 a)	 [13b]d- 0-/'d-Z7	 D 2

where:

subscript = I denotes value before a change in diameter

subscript = 2 denotes value after a change in diameter

If X remains unchanged (i.e. ,
tj variesaries as D) then eq. (10) gives:

G-

lilit D 1Bi	 00	
'T	

[14a)
X G
	

0	 2	 2L

lim- F(do/dz) '^	
1/2

Bi -)- U	 1r, = ^
D	

(14b]
( W-1 67—dz)

L-	 2)

TIM relationship between the axial gradient and changes in D as a

function of the initial. Biot number, Bi l , (i.e., Bi based on the

initial system with charge diameter Dl ), is presented in Fig. 8.

Accordingly, increasing the charge diameter (D) will decrease the

dimensional axial gradient unless compensated for by other changes.

The effect of decreasing the charge diameter, on the other hand, is

a function of Bi. For large Bi a decrease in D will produce a

large increase in axial gradient if associated with a simultaneous

decrease in X G, if Bi is small, regardless of the maqnitudo of X Gf
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any decrease in D will enhance the axial qr6dient^, however, to a

lesser extent than with a large Bi.

3.5 Thermal Conductivity Chan e at the Crystnl-Melt Interface

The effect of R K on the axial temperature distribution according

to eq. (1) is shown in Fig. 9 for systems which arc otherwise

symmetric (i.e. f Bi 11 W 
Bi 

C /R K ). In all instances, tl c charge phase

with higher thermal conductivity exhibits a lower axial gradient

because of lower thermal resistance to heat transfer in 'the axial

direction. For charges with R K 5 1 1 the axial gradient in the

malt near the interface is therefore less than in the solid. The

functional relationship between the axial gradient in -t-he molt at

the ijie3t—crystal interface and R K1 analagous to eq. (10), is

dr' in melt at	 Bi C	 (:Rh 4.11 
K	 Ginterface

where .

Bi 11 = Bi C /R K

X1.1 
w X C - infinity

R ]K 
^ 1; systom is otherwise symmetric

luterfacc is at the center of the gradient zone

Comparing cgs. [153 and [101, it is seen that, independent of Bi,

tiny increase in R K results in a decrease of the axial gradient in

the malt. The axial gradient as a function of R. according to

eq. [151 is plotted in Fiq. 10 for several BiC values with X G 	 1.0.

Applyinq 
e
q . LJL:2 

to 
germanium (AK z 2.5) f for example, it is round
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that the conductivity effect reduces the interfacial melt gradient

by about 50%.

3.6 Latent Heat Effect

The generation of latent heat of solidification at the melt-

crystal interface enters the solution of eq. Ill only through the

boundary condition at this interface (eq. (21). (Po in this section

is not Peeff , but should be interpreted as defined in eq. (11.)

For the symmetric case (R X = 1), the axial temperature gradient

in the liquid at 'the crystal-molt interface thus becomes.-

dO
- 2 + Pe S R11 

(Bi- 1/2 + X
G)-	 1 

a T	 2 (Bi -1/ 2' 
+ Xr" )

where:

B i - B i C	 Bi 11

XH 
= X C infinity

Pe5RII
	 0; system is otherwise symmetric

Interface is at the center of the gradienc zone

For R K ^ 1, the axial gradient assumes the form:

-2 + Pe R (Bi- 1/2
do	 S 11	 C	

+ X G)	
[16a]

d^	
Bi- 

1/ 2 
(RIC

	
1 2 

+ X (I + RC	 K K	 G	 K

where:

Bi	 Bi.0/R
St

[161
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From eq. [161 is can be seen that the effect of the latent heat on

axial gradients (and also on the temperature profile) will be small

if

11/2 + X
Y	 G)

Equation (171 demonstrates that the effect of latent heat on the

axial temperature behavior increases as Bi decreases.

Axial temperature profiles calculated from eq. (1] for various

values of ' are plotted in Fig. 11 where, in order to isolate the

latent heat effects Po was chosen small enough so that eq. (9) is

satisfied, it can be seen that the generation of latent heat

both inc rea-ses the chargo Ttomporzatturo and decreases the axial gra-

dientat the interface in the molt. For small values of ^, the

latent heat effect disappears and the axial temperature profile

approaches that of symmetric systems.

3.7 "Infinite" Charge Length

The contribution from the posit:.-a characteristic root, eq. (81,

to the solution of eq. (1) is normally small and is zero for an

infinite charge length. The charge thus appears infinite in length

when the contribution from the negative root also becomes small,

i.e., for large r,. The temperature change within the hot or cold

zone reaches approximately 99% of its final value when exp [(m_)rl tr

0.01. Using this as a criterion for infinite length:

5
C00 >

(171
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where:

I
length of charge in hot or cold zone for charge
to appear infinitely long

if Pe is small so that eq. (9) is satisfied, the characteristic

roots become:

Mi = i 2 ABU	 U91

sand by substitution wo.* find:

T 5
	 (2012 i.

which is a usoEuJ expression for deLarr fining ^..

Por any charge length which appears infinito in both the hot

ana cold zones, tne temperature tiold of the charge will not change

(interface position remains fixed) as it is lowered through the gra-

dient zone. Figure 12 shows the progression of axial temperature

profiles as the charge moves from the hot- zone to the cold zone for

charge lengths loss than infinite. It can be seen that charge

temperatures arc displaced toward the hot zone furnace temperature

whon most of the charge is in the hot zone and vice—versa. Accord-

ingly, to achieve constant interface position for non-infinite

charge lengths, the nondimonsional molt temperature must be reduced.

as the experiment proceeds. At constant nondimensional molt tom-

porature, the interface will move from the cold zone toward 
the 

hot

zone and the interface growth velocity will be greater than the

lowering rato. This finding is in . agreomont with the experimental

results of Clyne (SIG) which suggest that longer charges and highor

Bi will Lend to stabilize the i,)-,tarfaca position (growth rate is
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the same as the displacement rate).

When the charge length is not ll infinJte ll , appropriate boundary
conditions must be applied to the ends of the charge. For a solid
pull rod, an approximate Bi can, for example, be obtained by

I	 treating it as n simple fin, exchanging heat with the environment.
I	 The curves of Fig. 12 were calculated using for the ends the same

Bi as for the circumference.

3.8 Effect of Radial Gradients on the Axial Temperature Profile

In the development of eq. [1], the radial temperature distri-
bution of 0 at each axial location ^ was considered constant.
Presently, radial gradients in the charge are considered insofar as

they affect the preceding results for the axial temperature distri-

bution.

The heat transfer between the furnace and charge accounted for

in the Bi term of eq. [1] depends on the temperature difference be-

tween the furnace wall and they charge surface. This temperature
difference can be accommodated in eq. [1])

d2 0 - Pe	 -4Bi CO2	 f - 0
S )	 [21]

where:

e s = surface temperature of charge

Integrating each term of eq. [2l] with respect to the cross sectional

area of the charge and assuming that the average of the derivatives

14
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is approximatoly equal to 
the 

derivative of the averages, we find:

d2v

2dr,
re dU	 -4Bi[(O

a-E,	 f
s-	 3	 [221

where:

Jarea X - d (area)

[In eq.	 [22] the radial gradients are expressed by the term (0,

if the radial temperature distribution within the charge is approxi-

mated as was done for the crucible in Section 3.1, we obtain:

- - 2-
(OS	 32 d r, 2

Combining eq. [231 with eq. (221 leads to a*relationship for an

effective Bi, (Bi*eff ), which accounts for radial temperature gradi-

ents, within the charge:

Bi	 Bi
off	 + RIL8

where:

Bi = Biot as defined in Section 3.1 (accounting
for crucible effect, but not for i-adial
gradient effect)

Bi * = Biot accounting for both crucible effect and
eff radial temperature gradients in the charge

Equation [24] can be used to approximate the effect of radial gradi-

ents on the & ,,xial temperature distribution if Bi/8 is not small

compared t%, unity. if Bi/8 is small compared to uni
t
y, on the other

[ 241
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hand, eq. (1) reasonably predicts the axial temperature profile.

The validity of eq. E241 can be tested on the basis of data

obtained through the two-dimensional finite difference model by

Fu and Wilcox. (3) Piqure 3 of their paper presents the radial

variation of the axial gradient at the interface of symmetric sys-

tems for several Iii and AC . Point values from -these curves were

1jumerically integrated to obtain the average axial gradient over

the cross section and were compared to the values obtained using

eqs. (101 and [241 (see Table 1). Considering the approximations

required in the derivation of eq. [241, the agreement of the data

must be taken as excellent. The comparison demonstrates that the

one-dimensional models presently used provide a meaningful repre-

sentation of the parameters governing the axial temperature behavior

of charges in a Bridgman-type growth configuration.

4. DISCUSSION AND CONCLUSIONS

The one-dimensional model developed 
in Section 2 has been shown

to correlate well with a corresponding two-dimensional model of

Sen and Wilcox (2) concern, 4.ng the axial temperature distribution in

a solidifying charge. It is expected, therefore, that the results

derived from this model accurately demonstrate the effects of

furnace and material property parameters and can be applied to the

optimization of both furnace design and execution of growth experi-

ments. The model is easily applied to machine computation. Its

primary asset, however, lies in the fact that it yields extremely

useful and relatively simple analytical relationships. For example,

criteria could thus be derived which ilef ine the conditions under which
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the effects of charge motion, length of charge in the hot and cold

furnaces, and the generation of latent heat can be neglected; the

effects of thickness and thermal conductLvity of a confining cru-

cible could be accounted for by a simple modification of the Bi

parameter .

I	 The model indicates that the Axial gradient in the liquid at

the interface is adversely affected (decreases) by the following

charge properties:

-Large thermal conductivity
-Large latent heat of solidification
# Large R K (k liquid^ksolid)

Maximization of axial gradients in the charge can be approached

through several operational and design options, each of which, how-

ever, has its limitations and potential drawbacks:

Diot Numbor: Axial thermal gradients can be increased by increasing

the heat transfer coefficients (h) in both the hot and the cold

zones (eq. (101). Since in typical high temperature growth O.xperi-

ments heat transfer is largely controlled by radiation, it is imper-

ative that furnace emissivities be kept high. (Within the gradient

zone, however, undesirable radial heat transfer can be reduced

through the installation of highly reflecting radiation shields.)

Given the third power temperature dependence of the radiation heat

transfer coefficient, an increase of the furnace temperature will

also increase Bi. This approachr however, has its limitations in

systems which develop high vapor pressures and thus require special

c"ciblo materials and construction, which in turn may reduce Bi.
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Heat conduction across the chap between the furnace and the cru-

cible can significantly contribute to the overall heat transfer coal-

ficient if the gap width is small and the gas has a high thermal con-

ductivity. For example, He in a one millimeter gap will transfer

about the same quantity of heat by conduction as is transferred by

radiation at 990°C. Small gap widths, however f-accentuate errors

in centering the charge within the furanc:e cavity and thus will

prevent the establishment of axi-symmetric boundary conditions.

Gradient Zone Length: For any given temperature difference between

the hot and cold zones, a decrease in the gradient zone length, XG,

will increase the axial gradient, especially for large Bi (eq.

(141). A smaller a G , however, will also produce larger radial gra-

dients in the gradient zone r (3) and the precision with which the

interface must be localized in order to satisfy radial gradient

criteria will ,increase.

Charge: Diameter: For a given system, any decrease in charge diameter

will decrease Bi and thus the nondimensional axial gradient, but

will increase the dimensional axial gradient (see Section 3.4).

This effect is moat pronounced for large Bi and when accompanied

by a decrease in lG.

Furnace Temperature Difference Between Hot and Cold Zones: Increas-

ing ATref 
will produce a proportional increase in the axial gradi-

ant, eri . (11) .

Crucible: To prevent a severe reduction in Bieff , the thermal con-

ductivity of the crucible should be close to that of the charge.

in systems with large conductivity differences between the liquid

and solid charge, the conductivity of the crucible should be chosen
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so that the nondimensional axial gradient is maximized according
p,

to eq. (12). A thin crucible (6 close to unity) also sorves to	 il

keep Bioff high, if vapor pressure considerations are important,

the resultant decrease in crucible strength can be overcome by

pressurizing the furnace system. An alternate approach to maxi-

mizing Bioff consists of the use of coated metallic crucibles.

Growth Rate.- Xf the generation of latent heat is significant (eq.
ri

(17)), a decrease in the growth rate (smaller Pe S R11 ) will serve to

increase the axial gradient in the liquid at the interface.

The present study of functional rolationships concerning the

axial temperature distribution in Bridgman configurations is of

obvious importance for gradient control and the related mor pholog-

ioal stability of the growth interface. Moreover, axial gradient

control is interrelated to the nucleation and segregation affecting

radial thermal gradient control, dealt with in Part 11 of this work.
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APPENDIX

For an infinite charge longth and crystal-melt interface posi-

tion within the gradient zone, the modal of Section 2 yields the

following expression for the axial gradient in the liquid at the

interface:
1	 1.

M
4	

` 

+ 
PC 

R

— . 1) CM4 (P - ,-,M )	 s

do

(m^

m2
T

mM4 1111K 	
M-3 C I + (mi	 m4 (Ij - rm)

M2

where:

PC
M LM
1	 2 

Cl + (1.+1.6 
^^
Pere

M = 
PCs [1 - (l + 16 . 

2 

1/2

2 2̂	 L" C-PO

m3 = Pe L

M4 - PC,s

Pe L = Peclet number based on liquid properties

PCs = Pc-olet number based on solid properties

Di li = Riot number in hot zone (based on liquid properties)

Bi C = Blot number in cold zone (based on solid properties)

11 = l M /D) = 
L2 XG2 G
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^ M w dimensionless interface position with respect to
the center of the gradient zone. -p < M < +V.

I	 The relation between interface temperature (am) and position
( 4 m ) is given by

m	
4	 + Pd S R H

1 + a - 1 em4

m	 M4 

Im 2	
R K M 3

	

I + (-m, 1) eM4 (P-;m)	 l+ (M3 - 1) e-M3 (V+gym)
m 
2	 m 1

Note that an iterative solution is required if it is desired to

determine ^ given 0---.
M	 M

For a symmetric system, eq. [9) holds and ml and m2 can be

approximated by eq. (20). This leads to a simplified form of the

axial gradient expression, which is used in Section 3.
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Table 1. 
Axial 

tll(,-,rmal qr ►divnits at tho crysLal-nielt inLerfaae as
obtainod throtiqll eqs. (101 and (241, db*/dr,, and averaqe

axial thermal gradients (dO/dr,) av e as doterminod from

the two-dimensional model of Pu and Wilcox. (3)

X	 0

dOr̂) a

v

Flu and wilcox (3)

Or

V

I-Iqs.	 [101	 and	 (241

1.310 1.260

B i rn	 2	 X	 0. 25 0,975 0.961

X	 0.50 0.778 0.775

X G	
0 0.616 0.617

X	 0.5 0.464 0. 4 7 2 

- symmot'ric systoill

-infinito OlIds
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FIGURE CAPTIONS

Fig. 1	 Modified Bridgman-Stockbarger confiVuration.

Fig. 2	 Thermal model of f-%.4rnaoe and charge with crucible.

Fig. 3	 Effect of thermal conductivity of a cruciblt^ on the

effective Biot number.

rig. 4	 Effect of charge mot-ion on the axial temperature dis-

tribution in a charge.

Fig. 5	 Effect of thermal coupling between furnace and charge

on the axial temperature distribution within the charqo.

Fig. 6	 Effect of gradient zono longth and Bi 
on 

the axial tem-

perature, gradient in 
the 

molt at the crystal-melt inter-•

f ace .

Fig. 7	 Effoct of unequal. hot and cold zone Bi on the axial
temperature distribution in tho charge.

Fig. 8	 Effeot of charge' 	 on the axial temperature

gradicnt at the aryatal-walt intorf ace. (Tho axial
coordinate is dimensional.)

Fig. 9	 Effect of difference in thermal conductivity 
of 

arystal

and malt on the axial temperature distribution in the

charge.

Fig, 10	 Effect of thermal conductivity ratio (RYA ) and Bi on tho
axial temperature gradient in the molt- 

at 
the crystal-

malt interface.
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Fig. 11	 Effect of the generation of latent heat at the growth

interface on the axial temperature distribution in the
charge.

Fig, 12	 Effeot of charge position within the furnace on the
axial temparaturo distribution.
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